Spherical Trigonometry

The earth is usually regarded as a sphere in celestial navigation although an oblate spheroid would be a better approximation. Otherwise, navigational calculations would become too difficult for practical use. The position error introduced by the spherical earth model is usually very small and stays within the "statistical noise" caused by other omnipresent errors like, e.g., abnormal refraction, rounding errors, etc. Although it is possible to perform navigational calculations solely with the aid of tables (H.O. 229, H.O. 211, etc.) and with little mathematics, the principles of celestial navigation can not be comprehended without knowing the elements of spherical trigonometry.

The Oblique Spherical Triangle

Like any triangle, a spherical triangle is characterized by three sides and three angles. However, a spherical triangle is part of the surface of a sphere, and the sides are not straight lines but arcs of great circles (Fig. 10-1).

Fig. 10-1

A great circle is a circle on the surface of a sphere whose plane passes through the center of the sphere (see chapter 3).
Any side of a spherical triangle can be regarded as an angle - the angular distance between the adjacent vertices, measured at the center of the sphere. The interrelations between angles and sides of a spherical triangle are described by the law of sines, the law of cosines for sides, the law of cosines for angles, Napier's analogies, and Gauss' formulas (apart from other formulas).

Law of sines:

$$
\frac{\sin A_{1}}{\sin s_{1}}=\frac{\sin A_{2}}{\sin s_{2}}=\frac{\sin A_{3}}{\sin s_{3}}
$$

Law of cosines for sides:

$$
\begin{aligned}
& \cos s_{1}=\cos s_{2} \cdot \cos s_{3}+\sin s_{2} \cdot \sin s_{3} \cdot \cos A_{1} \\
& \cos s_{2}=\cos s_{1} \cdot \cos s_{3}+\sin s_{1} \cdot \sin s_{3} \cdot \cos A_{2} \\
& \cos s_{3}=\cos s_{1} \cdot \cos s_{2}+\sin s_{1} \cdot \sin s_{2} \cdot \cos A_{3}
\end{aligned}
$$

Law of cosines for angles:

$$
\begin{aligned}
& \cos A_{1}=-\cos A_{2} \cdot \cos A_{3}+\sin A_{2} \cdot \sin A_{3} \cdot \cos s_{1} \\
& \cos A_{2}=-\cos A_{1} \cdot \cos A_{3}+\sin A_{1} \cdot \sin A_{3} \cdot \cos s_{2} \\
& \cos A_{3}=-\cos A_{1} \cdot \cos A_{2}+\sin A_{1} \cdot \sin A_{2} \cdot \cos s_{3}
\end{aligned}
$$

Napier's analogies:

$$
\begin{aligned}
\tan \frac{A_{1}+A_{2}}{2} \cdot \tan \frac{A_{3}}{2} & =\frac{\cos \frac{s_{1}-s_{2}}{2}}{\cos \frac{s_{1}+s_{2}}{2}}
\end{aligned} \quad \tan \frac{A_{1}-A_{2}}{2} \cdot \tan \frac{A_{3}}{2}=\frac{\sin \frac{s_{1}-s_{2}}{2}}{\sin \frac{s_{1}+s_{2}}{2}}
$$

Gauss' formulas:

$$
\begin{aligned}
& \frac{\sin \frac{A_{1}+A_{2}}{2}}{\cos \frac{A_{3}}{2}}=\frac{\cos \frac{s_{1}-s_{2}}{2}}{\cos \frac{s_{3}}{2}}=\frac{\cos \frac{A_{1}+A_{2}}{2}}{\sin \frac{A_{3}}{2}}=\frac{\cos \frac{s_{1}+s_{2}}{2}}{\cos \frac{s_{3}}{2}} \\
& \frac{\sin \frac{A_{1}-A_{2}}{2}}{\cos \frac{A_{3}}{2}}=\frac{\sin \frac{s_{1}-s_{2}}{2}}{\sin \frac{s_{3}}{2}} \quad \frac{\cos \frac{A_{1}-A_{2}}{2}}{\sin \frac{A_{3}}{2}}=\frac{\sin \frac{s_{1}+s_{2}}{2}}{\sin \frac{s_{3}}{2}}
\end{aligned}
$$

These formulas and others derived thereof enable any quantity (angle or side) of a spherical triangle to be calculated if three other quantities are known.

Particularly the law of cosines for sides is of interest to the navigator.

The Right Spherical Triangle

Solving a spherical triangle is less complicated when it contains a right angle (Fig. 10-2). Using Napier's rules of circular parts, any quantity can be calculated if only two other quantities (apart from the right angle) are known.

Fig. 10-2

We arrange the sides forming the right angle $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ and the complements of the remaining angles $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and opposite side $\left(\mathrm{s}_{3}\right)$ in the form of a circular diagram consisting of five sectors, called "parts" (in the same order as they occur in the triangle). The right angle itself is omitted (Fig. 10-3):

Fig. 10-3

According to Napier's rules, the sine of any part of the diagram equals the product of the tangents of the adjacent parts and the product of the cosines of the opposite parts:

$$
\begin{aligned}
& \sin s_{1}=\tan s_{2} \cdot \tan \left(90^{\circ}-A_{2}\right)=\cos \left(90^{\circ}-A_{1}\right) \cdot \cos \left(90^{\circ}-s_{3}\right) \\
& \sin s_{2}=\tan \left(90^{\circ}-A_{1}\right) \cdot \tan s_{1}=\cos \left(90^{\circ}-s_{3}\right) \cdot \cos \left(90^{\circ}-A_{2}\right) \\
& \sin \left(90^{\circ}-A_{1}\right)=\tan \left(90^{\circ}-s_{3}\right) \cdot \tan s_{2}=\cos \left(90^{\circ}-A_{2}\right) \cdot \cos s_{1} \\
& \sin \left(90^{\circ}-s_{3}\right)=\tan \left(90^{\circ}-A_{2}\right) \cdot \tan \left(90^{\circ}-A_{1}\right)=\cos s_{1} \cdot \cos s_{2} \\
& \sin \left(90^{\circ}-A_{2}\right)=\tan s_{1} \cdot \tan \left(90^{\circ}-s_{3}\right)=\cos s_{2} \cdot \cos \left(90^{\circ}-A_{1}\right)
\end{aligned}
$$

In a simpler form, these equations are stated as:

$$
\begin{aligned}
& \sin s_{1}=\tan s_{2} \cdot \cot A_{2}=\sin A_{1} \cdot \sin s_{3} \\
& \sin s_{2}=\cot A_{1} \cdot \tan s_{1}=\sin s_{3} \cdot \sin A_{2} \\
& \cos A_{1}=\cot s_{3} \cdot \tan s_{2}=\sin A_{2} \cdot \cos s_{1} \\
& \cos s_{3}=\cot A_{2} \cdot \cot A_{1}=\cos s_{1} \cdot \cos s_{2} \\
& \cos A_{2}=\tan s_{1} \cdot \cot s_{3}=\cos s_{2} \cdot \sin A_{1}
\end{aligned}
$$

Ageton's sight reduction tables, for example, are based upon the formulas of the right spherical triangle (chapter 11).

