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Methodsfor Latitude and L ongitude M easur ement
Latitude by Polaris

The observed altitude of a star being vertically above thegggphic north pole would be numerically equal to the
latitude of the observeFi{g. 6-1).
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This is nearly the case with the pole star (Polaris). Howesgrce there is a measurable angular distance between
Polaris and the polar axis of the earth (presently ca. 1&)attitude of Polaris is a function of the local hour angleeTh
altitude of Polaris is also affected by nutation.dbtain the accurate latitude, several correstimve to be applied:

Lat =Ho-1°+a,+a +a,

The corrections @ a, and g depend on LHA,,.., the observer's estimated latitude, and the number of tmgm®hey
are given in the Polaris Tables of the Nautical Almanac [IIA). extract the data, the observer has to know his
approximate position and the approximate time.

When using a computer almanac instead of the N. A., we camledécLat with the following simple procedure. kas

our estimated latitude, Dec is the declination of Polamgl &is the meridian angle of Polaris (calculated from GHA and
our estimated longitude). Hc is the computed a#tHo is the observed altitude (see chapter 4).

Hc = arcsin(sinLat, [3inDec+ cosLat, [tosDecl¢ost)
AH =Ho-Hc

Adding the altitude differencéH, to the estimated latitude, we obtain the impbladitude:

Lat = Lat. +AH

The error of Lat is smaller than 0.1' when Lat smaller than 70° and when the error of L& smaller than 2°,

provided the exact longitude is known.. In polar regions, dlgorithm becomes less accurate. However, the result can
be improved by iteration (substituting Lat for lagnd repeating the calculation). Latitudes greater thans@buld be

avoided because a greater number of iterations might bess@ga The method may lead to erratic results when the
observer is close to the north pole (Lat DeGyg.id- An error in Lat resulting from an error in longitude ot

decreased by iteration. However, this error is gdasmaller than 1' when the error in longitudeniser than 1°.



Noon Latitude (Latitude by Maximum Altitude)

This is a very simple method enabling the observer to detexitaititude by measuring the maximum altitude of the sun
(or any other object). No accurate time measurement is medjut he altitude of the sun passes through a flat maximum
approximately (see noon longitude) at the moment of upper meridian paqsacg apparent noon, LAN) when the

GP of the sun has the same longitude as the observer andes mdttth or south of him, depending on the declination of
the sun and observer’s geographic latitude. The obserlatitsde is easily calculated by forming the algebraic sum o
difference of the declination and observed zenith distan(@)°-Ho) of the sun, depending on whether the sun is north
or south of the observeFig. 6-2).
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1. Sun south of observeFi(y. 6-29: Lat = Dec+z = Dec- Ho+90°
2. Sun north of observeFig. 6-2b: Lat = Dec—-z = Dec+Ho-9Q°

Northern declination is positive, southern negative.

Before starting the observations, we need a rough estinfiaer @urrent longitude to know the time (GMT) of meridian
transit. We look up the time of Greenwich meridian transithef sun on the daily page of the Nautical Alimanac and add
4 minutes for each degree of western longitude or subtradhdtes for each degree of eastern longitude. To determine
the maximum altitude, we start observing the sun approxipat5 minutes before meridian transit. We follow the
increasing altitude of the sun with the sextant, note theimmam altitude when the sun starts descending again, and
apply the usual corrections.

We look up the declination of the sun at the approximate ti@®IT) of local meridian passage on the daily page of the
Nautical Almanac and apply the appropriate formula.

Historically, noon latitude and latitude by Polaai® among the oldest methods of celestial naaigati

Ex-Meridian Sight

Sometimes, it may be impossible to measure the maximurasdtiof the sun. For example, the sun may be obscured by
a cloud at this moment. If we have a chance to measure theddtif the sun a few minutes before or after meridian
transit, we are still able to find our exact latitude by reidgahe observed altitude to the meridian altitude, prodide
know our exact longitude (see below) and have an estimaterdatitude. The method is similar to the one used with
the pole star. First, we need the time (UT) of local meridicmnsit (eastern longitude is positive, western longitude
negative):

Lon[°]

TTransit[h] =12- EOT[h] - 15

The meridian angle of the sun, t, is calculatedhftbe time of observation (GMT):

t [ 0] = 15[(T0bservaticm[ h ] - TTransit[ h ] )



Starting with our estimated Latitude, latve calculate the altitude of the sun at the time of obsesmatie use the
altitude formula from chapter 4:

Hc = arcsin( sinLat, [3inDec+ cosLat, [¢osDecl¢ost )

Dec refers to the time of observation. We calcullaéedifference between observed and calculatéddast
AH = Ho—-Hc

We calculate an improved latitude, §afved:

Lat1.mproved = Lat. + AH

(sun north of observer:AH, sun south of observerAH)

The exact latitude is obtained by iteration, i. e., we stib&tiLaf,,veqfor Late and repeat the calculations until the

obtained latitude is virtually constant. Usually, no mdnart one or two iterations are necessary. The method has a few
limitations and requires critical judgement. The meridangle should be small, compared with the zenith distance of
the sun. Otherwise, a greater number of iterations may bessacy. The method may yield erratic results iflist

similar to Dec. A sight should be discarded whendhserver is not sure if the sun is north or sofitiis position.

The influence of a longitude error on the latittllgs obtained iaot decreased by iteration.

Latitude by two altitudes

Even if no estimated longitude is available, the exactudgtcan still be found by observation of two celestial bodies
The required quantities are Greenwich hour anglelimhtion, and observed altitude of each body [7].

The calculations are based upon spherical triangles (s@gteth10 & chapter 11). lrig. 6-3, Py denotes the north
pole, O the observer's unknown position, (3Re geographic position of the first body, and &Re position of the
second body.

90%Dec 4 90%Lat 90%Dec,

Fig. 6-3
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First, we consider the spherical triangle [GPy, GP,]. Fig. 6-3 shows only one of several possible configurations. O
may as well be outside the triangle [GPy, GP]. We form the difference of both Greenwich houglas,AGHA:

AGHA=|GHA, -GHA|



Using the law of cosines for sides (chapter 10)caleulate the great circle distance between &% GB, d.

cosd =sinDeg [$in Deg, + cosDeg [tosDec, [¢os(1GHA)
d = arccoq sin Deg [3in Deg, + cosDeg [¢osDec, [¢os(4 GHA) |

Now we solve the same triangle for the angl¢he horizontal distance betweeg &hd GB, measured at GP

_ sinDec, —sinDeg [cosd

cosw .
cosDeg [3ind
_ sinDec, —sinDeg [¢osd
W= arcco _
cosDeg [Sind

For the spherical triangle [GPO, GBR)], we calculate the angle, the horizontal distance between O and,GReasured
at GR.

sinH, —sinH, [cosd

COSp =
P cosH, [$ind
_ sinH, —sinH, [¢osd
0 = arcco :
cosH, [$ind

We calculate the anglg, the horizontal distance betweeg 81d O, measured at GPThere are two solutionsy(; and
y ) since co$ = cos (p):

R P

The circles of equal altitude intersect each other at twatgoil he corresponding positions are on opposite sideseof th
great circle going through GRand GR (not shown inFig. 6-3). Using the law of cosines for sides again, we solve the
spherical triangle [GR Py, O] for Lat. Since we have two solutions fgr, we obtain two possible latitudes, Land
Lat,.

sinLat, =sinH, [$inDeg +cosH, [tosDeg [cosy,
Lat, = arcsin(sinH, [3in Deg + cosH, [¢osDeg [Gosy, )

sinLat, =sinH, [$inDeg +cosH, [tosDeg [cosy,
Lat, = arcsin(sinH, [$inDeg + cosH, [GosDeg [€osy, )

We choose the value nearest to our estimated latitude. Fiee ohe is discarded. If both solutions are very similar and
a clear distinction is not possible, one of the sights shdsgddiscarded, and a body with a more favorable position
should be chosen.

Although the method requires more complicated calculatitvan, e. g., a latitude by Polaris, it has the advantage that
measuring two altitudes usually takes less time than fopdire maximum altitude of a single body. Moreover, if fixed
stars are observed, even a chronometer error of severad hasmo significant influence on the resulting latitudesin
AGHA and both declinations change very slowly irs ttase.

When the horizontal distance between the observed bodiestig vicinity of 0° or 180°, the observer's position is
close to the great circle going through aRd GRB. In this case, the two solutions for latitude are similard énding
which one corresponds with the actual latitude may be dilfiidepending on the quality of the estimate). The resgltin
latitudes are also close to each other when thereéd bodies have approximately the same Greertwighangle.



Noon Longitude (Longitude by Equal Altitudes)

Since the earth rotates with an angular velocity of 15° per kath respect to the mean sun, the time of local meridian
transit (local apparent noon) of the sum,, L can be used to calculate the observer's longitude

Lon[ ° ] = 15[(12 - TTransit[ h] - EOTI’ransit[ h ] )

T1ransitiS Measured as GMT (decimal format). The corrediao EoT at the time of meridian transit, E@J;, has to be
made because the apparent sun, not the mean sun, is obssreathépter 3). Since the Nautical Almanac contains only
values for EOT (see chapter 3) at 0:00 GMT andABMT of each day, Eqf,nsithas to be found by interpolation.

Since the altitude of the sun - like the altitude of any céé$tody - passes through a rather flat maximum, the time of
peak altitude is difficult to measure. The exact time of wham transit can be derived, however, from the times of two
equal altitudes of the sun.

Assuming that the sun moves along a symmetrical arc in theTsky,iiS the mean of the times corresponding with a
chosen pair of equal altitudes of the sun, one mitbefore LAN (T,), the other past LAN () (Fig. 6-4):
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In practice, the times of equal altitudes of the ate measured as follows:

In the morning, the observer records the timec@rresponding with a chosen altitude, H. In the afterndoa time T, is
recorded when the descending sun passes through the sameéeattgain. Since only times of equal altitudes are
measured, no altitude correction is required. Titerval T,-T, should be greater than approx. 2 hours.

Unfortunately, the arc of the sun is only symmetrical withpect to T, if the sun's declination is constant during the
observation interval. This is approximately the case adotle times of the solstices. During the rest of the year,
particularly at the times of the equinoxes; i differs significantly from the mean of ;Tand T, due to the changing
declination of the sunFig. 6-5 shows the altitude of the sun as a function of time and ilaies how the changing
declination affects the apparent path of the suthersky, resulting in a time differenc&T.
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The blue line shows the path of the sun for a given, constasiindgion, Deg. The red line shows how the path would
look with a different declination, DeclIn both cases, the apparent path of the sun is symmetridarespect to F,,.i
However, if the sun's declination varies from PatT, to Deg at T,, the path shown by the green line will result.



Now, T; and T, are no longer symmetrical to1Ls; The sun's meridian transit occurs beforg«T,)/2 if the sun's

declination changes toward the observer's parallel ofutdi like shown inFig. 6-5. Otherwise, the meridian transit
occurs after (T+T,)/2. Since time and local hour angle (or meridian angle) aop@tional to each other, a systematic

error in longitude results.

The error in longitude is negligible around the times of thistices when Dec is almost constant, and is greatest (up to
several arcminutes) at the times of the equinoXeswthe rate of change of Dec is greatest (apfrény. Moreover, the
error in longitude increases with the observetltulde and may be quite dramatic in polar regions.

The obtained longitude can be improved, if necgssgrapplication of thequation of equal altitudes [5]:

tanLat tanDe
At = - - G [ADec A Dec= Dec, - Dec
sint, tant,
At is the change in the meridian angle, t, which cancels thexgan altitude resulting from a small change in

declinationADec. Lat is the observer's latitude. If the acautatitude is not known, an estimated latitude mmaysed.
t, is the meridian angle of the sun aj.TSince we do not know the exact value fiiritially, we start our calculations

with an approximate value calculated fromand T,:

tz[o] ~ 15[(T2[h]_T1[h])
2

We denote the improved value foy By T,*.

at°]

2[n] =7 [n] -a7[n] =7n] - 21L

At T,* the sun would pass through the same altitude as measurédiiDec did not change during the interval of
observation. Accordingly, the improved time of ni@n transit is:

T+ T

ransit =
2

Ty

The residual error resulting from the initial error gfis usually not significant. It can be decreased, if necgssar
iteration. Substituting F for T,, we get the improved meridian anglg; t

REEC A DR
2

With the improved meridian angls*twe calculate the improved correctiatt:

AtF = (tan Lat _tanDeg,

[ADec
sint; tant; j

Finally, we obtain a more accurate time valug*T

2*[n] =7[n] - 2E L)

And, accordingly:

T

ransit —
2

T;



The error of ADec should be as small as possible. Calculatiidec with a high-precision computer almanac is
preferable to extracting it from the Nautical Almanac. Whesing the Nautical Almanad\Dec should be calculated
from the daily change of declination to keep thending error as small as possible.

Although the equation of equal altitudes is strictly valityfor an infinitesimal change of Dec, dDec, it can be usead fo

a measurable changé&Dec, (up to several arcminutes) as well without sacrificmgch accuracy. Accurate time
measurement provided, the residual error in lodgittarely exceeds +0.1".

Theory of the equation of equal altitudes

The equation of equal altitudes is derived fromahitude formula (see chapter 4) usitiffer ential calculus:

sinH = sinLat[sinDec+ cosLat[cosDeclcost

First, we need to know how a small change in datiim would affect sin H. We form the partial detive with respect
to Dec:

d(sinH)
0Dec

= sinLat[€osDec - cosLat [$inDec[tost

Thus, the change in sin H caused by an infinitekaiange in declination, d Dec, is:

d(sinH)

5 Dec DeC= (sinLat [tosDec - cosLat [$in Decltost) [é Dec
ec

Now, we form the partial derivative with respect io order to find out how a small change in therigian angle would
affect sin H:

d(sinH)
ot

= —coslLat[¢osDec[sint

The change in sin H caused by an infinitesimal ghan the meridian angle, dt, is:

d(sinH)
ot

[t = —cosLat[¢osDecl3int[dt

Since we want both effects to cancel each othertatal differential has to be zero:

a(SinH)EiDec+a(SinH)Eit -0
0 Dec
_a(sinH)mt _ a(SinH)mDec

ot 0 Dec



cosLat [€osDeclint [dt = (sinLat[&osDec - coslLat [$inDecltost) (i Dec

_ sinLat[cosDec- cosLat [sinDeclcost
cosLat [tosDec[sint

dt [dl Dec

tanLat tanD

dt = a' al _lanbec [d Dec
sint tant

At = tar?Lat_tanDec A Dec
sint tant

Longitude M easurement on a Traveling Vessel

On a traveling vessel, we have to take into account not omyirtiuence of varying declination but also the effects of
changing latitude and longitude on the altitud¢éhefbody during the observation interval. Diffefatibg sin H (altitude
formula) with respect to Lat, we get:

d(sinH)
o0 Lat

= coslLat [$inDec—-sinLat [¢osDec[tost

Again, the total differential is zero because the combinféetts of latitude and meridian angle cancel each other with
respect to their influence on sin H:

d(sinH) Hlat+ d(sinH)
o0 Lat d Dec

dt =0

In analogy with a change in declination, we obthimfollowing formula for a small change in latitud

dt = tanDec tanLat
sint tant

JEdLat

The correction for the combined variations in Deat, and Lon is:

At = tar.1Lat2 _ tanDec, ADec + tan.Dec2 _tanlLat, Alat — Alon
sint, tant, sint, tant,

AlLat and ALon are the small changes in latitude and longitude cormedipg with the path of the vessel traveled
between Tand T,. The meridian angle,,thas to include a correction faton:

[¢] = 18(Tln]-Tlh])-avon]
2

AlLat andALon are calculated from the course, C, the velamitgr ground, v, and the time elapsed.

Alat['] = v[kn] eosC {T,[h]-T,[h])



Lat, = Lat, +AlLat

ALon['] = v[kn] %ﬂﬂ[h]‘ﬂ[h])

Lon, = Lon +ALon
1kn(knot) = 1nm/h

C is measured clockwise from true north (0°...36Again, the corrected time of equal altitude is:

Atf°]

(0] =Tln] - 2L

T+ T,

ransit =
2

T;

The longitude calculated from[,irefers to the observer's position at The longitude at Fis Lon+ALon.

The longitude error caused by a change in latitude can beatimand requires the navigator's particular attentioenev
if the vessel travels at a moderate speed. The above coasaler clearly demonstrate that determining omzact
longitude by equal altitudes of the sun is not as simple aseitrs to be at first glance, particularly on a traveling viesse
It is therefore quite natural that with the development okition line navigation (including simple graphic solutsfor

a traveling vessel), longitude by equal altitudesame less important.

The Meridian Angle of the Sun at Maximum Altitude

Fig. 6-5 shows that the maximum altitude of the sun is slightly défetrfrom the altitude at the moment of meridian
passage if the declination changes. At maximum altitude, riite of change of altitude caused by the changing
declination cancels the rate of change of altittalgsed by the changing meridian angle.

The equation of equal altitude enables us to calculate thi&ime angle of the sun at this moment. We divide each side
of the equation by the infinitesimal time interedl:

dT

dt _ [ tanLat _ tanDec Dd Dec
sint tant dT

Measuring the rate of change of t and Dec in aratasper hour we get:

900'/h = (tanLat B tanDecj Dd Dec[']

sint tant dT[h]

Since t is a very small angle, we can substitutd far sin t:

tanLat — tanDec _d Ded]']

900 =
tant dT[h]

Now, we can solve the equation for tan t:

_ tanLat - tanDec _d Ded|']

tant
900 dT[h|




Since a small angle (in radians) is nearly equébttangent, we get:

(] 5~ _ fanLat-tanDec _d Ded]']
180 900 dT[h|

Measuring t in arcminutes, the equation is stated a

t['] = 382E(tanLat—tanDec) [jdLC[]
dT[h|

dDec/dT is the rate of change of declination messim arcminutes per hour.
The maximum altitude occurs after meridian traifisits positive, and before meridian transit i§thegative.

For example, at the time of the spring equinox (Be@, dDec/dT= +1'/h) an observer being at +80° (N) latitude would
observe the maximum altitude of the sun at+21.7', i. e., 86.8 seconds after meridian transit (LAN). dbserver at
+45° |atitude, however, would observe the maximititude at t= +3.82', i. e., only 15.3 seconds after meridianditan

The Maximum Altitude of the Sun

We can use the last equation to evaluate the systematicafreonoon latitude. The latter is based upon the maximum
altitude of the sun, not on the altitude at the moment of nienidransit. Following the above example, the observer at
80° latitude would observe the maximum altituder8&conds after meridian transit.

During this interval, the declination of the sunuMbhave changed from 0 to +1.445" (assumingDeatis O at the time
of meridian transit). Using the altitude formuldépter 4), we get:

Hc = arcsin(sin80° (3in1.445' + cos80° [0s1.445' [¢0s21.7') = 10°0' 072"

In contrast, the calculated altitude at meridian transitidoe exactly 10°. Thus, the error of the noon latitude wdagd
-0.72".

In the same way, we can calculate the maximunud#ibf the sun observed at 45° latitude:

Hc = arcsin(sin 45° $in 0.255' + cos45° [¢0s0.255' [€0s382) = 45°0' 013"

In this case, the error of the noon latitude wdagdonly -0.13".

The above examples show that even at the times of the equintivesystematic error of a noon latitude caused by the
changing declination of the sun is not significant becatige inuch smaller than other observational errors, e. g., the
errors in dip or refraction. A measurable error in latitué® only occur if the observer is very close to one of the poles
(tan Lat!). Around the times of the solstices, ¢neor in latitude is practically non-existent.

Time Sight

The process of deriving the longitude from a single altitofla body (as well as the observation made for this purpose)
is calledtime sight. However, this method requires knowledge of the exactiddit e. g., a noon latitude. Solving the
navigational triangle (chapter 11) for the meridéangle, t, we get:

sinHo — sinLat[sinDec
coslLat[cosDec

t = xarccos

The equation has two solutions, +t and —t, since cos t = cQsGetometrically, this corresponds with the fact that the
circle of equal altitude intersects the parallelatitude at two points.



Using the following formulas and rules, we obtdia tongitudes of these points of intersection, Laxmd Lon:

Lon =t-GHA
Lon, = 360° -t - GHA

If Lon, < -180C - Lon +360C°
If Lon,< -180° - Lon,+360°
If Lon,> +180° - Lon,—-360C°

A time sight can be used to derive a line of position from algirgsumed latitude. After solving the time sight, we plot
the assumed parallel of latitude and the calculateddian.

Next, we calculate the azimuth of the body with respect topibsition thus obtained (azimuth formulas, chapter 4) and
plot the azimuth line. Our line of position is the perpenthcwof the azimuth line going through the calculated positio

(Fig. 6-6).

AZimuth Line Az

Fig. 6-6

/ Assurned Parallel of Latitude

to GP

Calculated Meridian

The latter method is of historical interest only. The modeamigator will certainly prefer the intercept method (cteap
4) which can be used without any restrictions regarding digmi angle (local hour angle), latitude, and declinaticre(s
below).

A time sight is not reliable when the body is close to the maridUsing differential calculus, we can demonstrate that
the error of the meridian angle, dt, resulting framaltitude error, dH, varies in proportion witlsif t:

cosHo
coslLat[cosDeclsint

dt = -

Moreover, dt varies inversely with cos Lat and cos Dec. Tioeeg high latitudes and declinations should be avoided as
well. The same restrictions apply$amner'snethod.

Direct Computation of Position

Combining atime sight with a latitude by two altitudes, we can find our position, provided we know the exact time.
After obtaining our latitude, Lat, from two altitudes (seleose), we apply the time sight formula and calculate the
meridian angle of the first body,,tfrom the quantities Lat, Dgcand H (seeFig. 6-3). From t, we obtain two possible
longitudes. We choose the one nearest to our estimateduolegiThis is a rigorous method, not an approximation. It is
rarely used, however, since it is more cumbersdrae the graphic solutions described in chapter 4.



